Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139330

RESUMO

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Lesão Pulmonar/patologia , Proteína Amiloide A Sérica/genética , Sepse/patologia , Pulmão/patologia , Quimiocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Sci Signal ; 15(725): eabl9322, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290084

RESUMO

Sepsis is a major health issue with mortality exceeding 30% and few treatment options. We found that high-density lipoprotein cholesterol (HDL-C) abundance was reduced by 45% in septic patients compared to that in nonseptic patients. Furthermore, HDL-C abundance in nonsurviving septic patients was substantially lower than in those patients who survived. We therefore hypothesized that replenishing HDL might be a therapeutic approach for treating sepsis and found that supplementing HDL with synthetic HDL (sHDL) provided protection against sepsis in mice. In mice subjected to cecal ligation and puncture (CLP), infusing the sHDL ETC-642 increased plasma HDL-C amounts and improved the 7-day survival rate. Septic mice treated with sHDL showed improved kidney function and reduced inflammation, as indicated by marked decreases in the plasma concentrations of blood urea nitrogen (BUN) and the cytokines interleukin-6 (IL-6) and IL-10, respectively. We found that sHDL inhibited the ability of the endotoxins LPS and LPA to activate inflammatory pathways in RAW264.7 cells and HEK-Blue cells expressing the receptors TLR4 or TLR2 and NF-κB reporters. In addition, sHDL inhibited the activation of HUVECs by LPS, LTA, and TNF-α. Together, these data indicate that sHDL treatment protects mice from sepsis in multiple ways and that it might be an effective therapy for patients with sepsis.


Assuntos
Sepse , Animais , Citocinas/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Sepse/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076358

RESUMO

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Assuntos
Coagulação Sanguínea , Inflamassomos/metabolismo , Piroptose , Trombose/etiologia , Trombose/metabolismo , Animais , Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Biomarcadores , Caspases/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Tromboplastina/metabolismo , Trombose/sangue , Trombose/mortalidade
4.
Biotechnol Bioeng ; 116(1): 28-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267585

RESUMO

Gas fermentation has emerged as a technologically and economically attractive option for producing renewable fuels and chemicals from carbon monoxide (CO) rich waste streams. LanzaTech has developed a proprietary strain of the gas fermentating acetogen Clostridium autoethanogenum as a microbial platform for synthesizing ethanol, 2,3-butanediol, and other chemicals. Bubble column reactor technology is being developed for the large-scale production, motivating the investigation of multiphase reactor hydrodynamics. In this study, we combined hydrodynamics with a genome-scale reconstruction of C. autoethanogenum metabolism and multiphase convection-dispersion equations to compare the performance of bubble column reactors with and without liquid recycle. For both reactor configurations, hydrodynamics was predicted to diminish bubble column performance with respect to CO conversion, biomass production, and ethanol production when compared with bubble column models in which the gas phase was modeled as ideal plug flow plus axial dispersion. Liquid recycle was predicted to be advantageous by increasing CO conversion, biomass production, and ethanol and 2,3-butanediol production compared with the non-recycle reactor configuration. Parametric studies performed for the liquid recycle configuration with two-phase hydrodynamics showed that increased CO feed flow rates (more gas supply), smaller CO gas bubbles (more gas-liquid mass transfer), and shorter column heights (more gas per volume of liquid per time) favored ethanol production over acetate production. Our computational results demonstrate the power of combining cellular metabolic models and two-phase hydrodynamics for simulating and optimizing gas fermentation reactors.


Assuntos
Butileno Glicóis/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Engenharia Metabólica , Reatores Biológicos/microbiologia , Clostridium/genética , Clostridium/crescimento & desenvolvimento , Hidrodinâmica
5.
Artigo em Inglês | MEDLINE | ID: mdl-30555417

RESUMO

High-density lipoprotein (HDL) have long been studied for their protective role against cardiovascular diseases, however recently relationship between HDL and cancer came into focus. Several epidemiological studies have shown an inverse correlation between HDL-cholesterol (HDL-C) and cancer risk, and some have even implied that HDL-C can be used as a predictive measure for survival prognosis in for specific sub-population of certain types of cancer. HDL itself is an endogenous nanoparticle capable of removing excess cholesterol from the periphery and returning it to the liver for excretion. One of the main receptors for HDL, scavenger receptor type B-I (SR-BI), is highly upregulated in endocrine cancers, notably due to the high demand for cholesterol by cancer cells. Thus, the potential to exploit administration of cholesterol-free reconstituted or synthetic HDL (sHDL) to deplete cholesterol in endocrine cancer cell and stunt their growth of use chemotherapeutic drug loaded sHDL to target payload delivery to cancer cell has become increasingly attractive. This review focuses on the role of HDL and HDL-C in cancer and application of sHDLs as endocrine cancer therapeutics.

6.
Arterioscler Thromb Vasc Biol ; 38(11): 2706-2717, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30354229

RESUMO

Objective- Continuous T-cell production from thymus is essential in replenishing naïve T-cell pool and maintaining optimal T-cell functions. However, the underlying mechanisms regulating the T-cell development in thymus remains largely unknown. Approach and Results- We identified SR-BI (scavenger receptor class B type 1), an HDL (high-density lipoprotein) receptor, as a novel modulator in T-cell development. We found that SR-BI deficiency in mice led to reduced thymus size and decreased T-cell production, which was accompanied by narrowed peripheral naïve T-cell pool. Further investigation revealed that SR-BI deficiency impaired progenitor thymic homing, causing a dramatic reduction in the percentage of earliest thymic progenitors, but did not affect other downstream T-cell developmental steps inside the thymus. As a result of the impaired progenitor thymic homing, SR-BI-deficient mice displayed delayed thymic regeneration postirradiation. Using a variety of experimental approaches, we revealed that the impaired T-cell development in SR-BI-deficient mice was not caused by hematopoietic SR-BI deficiency or SR-BI deficiency-induced hypercholesterolemia, but mainly attributed to the SR-BI deficiency in adrenal glands, as adrenal-specific SR-BI-deficient mice exhibited similar defects in T-cell development and thymic regeneration with SR-BI-deficient mice. Conclusions- This study demonstrates that SR-BI deficiency impaired T-cell development and delayed thymic regeneration by affecting progenitor thymic homing in mice, elucidating a previously unrecognized link between SR-BI and adaptive immunity.


Assuntos
Glândulas Suprarrenais/metabolismo , Proliferação de Células , Ativação Linfocitária , Regeneração , Receptores Depuradores Classe B/metabolismo , Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Imunidade Adaptativa , Glândulas Suprarrenais/imunologia , Animais , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Antígenos Comuns de Leucócito/deficiência , Antígenos Comuns de Leucócito/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Transdução de Sinais , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Timócitos/imunologia , Timo/imunologia
7.
Pathol Res Pract ; 212(6): 555-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27067809

RESUMO

Scavenger receptor class B type 1 (SR-B1) is an integral membrane protein that is expressed in numerous cells and tissue types. The primary role of SR-B1 is to facilitate uptake of cholesteryl esters from high-density lipoproteins (HDL) in the liver. Altered SR-B1 expression contributes to human diseases. This study assessed association of SR-B1 expression in breast tissue specimens with breast cancer development and prognosis. Tissue specimens from 30 cases of adjacent normal breast tissues, ductal carcinoma in situ (DCIS) and invasive ductal breast cancer (IDCA) were subjected to Western blot analysis, and 135 cases of DCIS and IDCA were used for quantitative immunohistochemical analysis of SR-B1 expression. The data showed that SR-B1 was significantly overexpressed in IDCA tissues compared to normal breast and DCIS tissues. SR-B1 expression was associated with pre-menopausal status, tumor size, and worse overall survival of patients. The data from this ex vivo study suggests that up-regulated SR-B1 protein expression is associated with malignant behaviors of breast cancer and that SR-B1 is an independent predictor for poor survival in breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Antígenos CD36/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/mortalidade , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
8.
PLoS Biol ; 14(2): e1002375, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26863604

RESUMO

In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.


Assuntos
Proteínas de Drosophila/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cílios/metabolismo , Drosophila , Camundongos , Células NIH 3T3 , Receptores Patched , Receptor Patched-1 , Fosforilação , Receptores de Superfície Celular/metabolismo , Receptor Smoothened
9.
Tumour Biol ; 37(3): 3581-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26456958

RESUMO

Scavenger receptor class B type I (SR-BI) has been linked to the development and progression of breast cancer. However, its clinical significance in breast cancer remains unclear. Here, we evaluated SR-BI expression in a well-characterized breast cancer tissue microarray by immunohistochemistry. High SR-BI expression was observed in 54 % of all breast cancer cases and was significantly associated with advanced pTNM stage (P = 0.002), larger tumor size (P = 0.023), lymph node metastasis (P = 0.012), and the absence of ER (P = 0.014). The Kaplan-Meier survival analysis revealed that patients with high SR-BI expression had significantly shorter overall survival (OS) (P = 0.004). Moreover, multivariate analysis with adjustment for other prognostic factors confirmed that SR-BI was an independent prognostic factor for patient outcome (P = 0.017). Overall, our study demonstrated that high SR-BI expression was related to conventional parameters indicative of more aggressive tumor type and may serve as a new prognostic marker for poor clinical outcome in human breast cancer.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Receptores Depuradores Classe B/biossíntese , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Linfática , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Análise Serial de Tecidos/métodos , Análise Serial de Tecidos/estatística & dados numéricos , Carga Tumoral
10.
Crit Care Med ; 43(11): e490-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26308430

RESUMO

OBJECTIVES: Corticosteroid therapy is frequently used in septic patients given the rationale that there is an increased demand for corticosteroid in sepsis, and up to 60% of severe septic patients experience adrenal insufficiency. However, the efficacy of corticosteroid therapy and whether the therapy should be based on the results of adrenal function testing are highly controversial. The lack of an adrenal insufficiency animal model and our poor understanding of the pathogenesis caused by adrenal insufficiency present significant barriers to address this long-standing clinical issue. DESIGN: Prospective experimental study. SETTING: University laboratory. SUBJECTS: Scavenger receptor BI null and adrenal-specific scavenger receptor BI null mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture. MEASUREMENTS AND MAIN RESULTS: Using scavenger receptor BI mice as the first relative adrenal insufficiency animal model, we found that corticosteroid therapy significantly improved the survival in cecal ligation and puncture-treated scavenger receptor BI mice but causes more septic death in wild-type mice. We identified a corticosteroid cocktail that provides effective protection 18 hours post cecal ligation and puncture; using adrenal-specific scavenger receptor BI mice as an inducible corticosteroid-deficient animal model, we found that inducible corticosteroid specifically suppresses interleukin-6 production without affecting tumor necrosis factor-α, nitric oxide, and interleukin-10 production. We further found that inducible corticosteroid does not induce peripheral lymphocyte apoptosis but promotes phagocytic activity of macrophages and neutrophils. CONCLUSIONS: This study demonstrates that corticosteroid treatment benefits mice with adrenal insufficiency but harms mice without adrenal insufficiency. This study also reveals that inducible corticosteroid has both immunosuppressive and immunopermissive properties, suppressing interleukin-6 production, promoting phagocytosis of immune effector cells, but not inducing peripheral lymphocyte apoptosis. These findings support our hypothesis that corticosteroid is an effective therapy for a subgroup of septic patients with adrenal insufficiency but harms septic patients without adrenal insufficiency and encourage further efforts to test this hypothesis in clinic.


Assuntos
Corticosteroides/uso terapêutico , Insuficiência Adrenal/tratamento farmacológico , Sepse/tratamento farmacológico , Insuficiência Adrenal/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Distribuição Aleatória , Medição de Risco , Sepse/mortalidade , Sepse/fisiopatologia , Taxa de Sobrevida , Resultado do Tratamento
11.
J Biol Chem ; 290(25): 15496-15511, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25947382

RESUMO

Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Ésteres do Colesterol/metabolismo , Glicoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/metabolismo , Aorta/patologia , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/patologia , Transporte Biológico Ativo/genética , Células CHO , Ésteres do Colesterol/genética , Cricetulus , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas HDL/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/genética
12.
J Biol Chem ; 289(21): 14666-73, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24719333

RESUMO

Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1(I179N) mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1(I179N) mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1(I179N) mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis.


Assuntos
Lipopolissacarídeos/imunologia , Fígado/imunologia , Receptores Depuradores Classe B/imunologia , Sepse/imunologia , Glândulas Suprarrenais/imunologia , Glândulas Suprarrenais/metabolismo , Animais , Western Blotting , Ceco/cirurgia , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/biossíntese , Glucocorticoides/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Ligadura/efeitos adversos , Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/imunologia , Peritônio/metabolismo , Mutação Puntual , Punções/efeitos adversos , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Sepse/etiologia , Sepse/microbiologia
13.
Nat Commun ; 4: 2657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24150174

RESUMO

Although it has long been known that patients with sepsis often have thrombocytopenia and that septic patients with severe thrombocytopenia have a poor prognosis and higher mortality, the role of platelets in the pathogenesis of sepsis is poorly understood. Here we report a protective role of platelets in septic shock. We show that experimental thrombocytopenia induced by intraperitoneal injection of an anti-glycoprotein Ibα monoclonal antibody increases mortality and aggravates organ failure, whereas transfusion of platelets reduces mortality in lipopolysaccharide-induced endotoxemia and a bacterial infusion mouse sepsis model. Plasma concentrations of proinflammatory cytokines TNF-α and IL-6 are elevated by thrombocytopenia and decreased by platelet transfusion in septic mice. Furthermore, we identify that platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the COX1/PGE2/EP4-dependent pathway. Thus, these findings demonstrate a previously unappreciated role for platelets in septic shock and suggest that platelet transfusion may be effective in treating severely septic patients.


Assuntos
Plaquetas/imunologia , Macrófagos Peritoneais/imunologia , Transfusão de Plaquetas , Choque Séptico/terapia , Trombocitopenia/prevenção & controle , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Plaquetas/citologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/imunologia , Dinoprostona/genética , Dinoprostona/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo Glicoproteico GPIb-IX de Plaquetas/imunologia , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/imunologia , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/patologia , Transdução de Sinais , Trombocitopenia/induzido quimicamente , Trombocitopenia/genética , Trombocitopenia/patologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
14.
J Biol Chem ; 288(25): 17947-53, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23658016

RESUMO

HDL has been considered to be a protective factor in sepsis; however, most contributing studies were conducted using the endotoxic animal model, and evidence from clinically relevant septic animal models remains limited and controversial. Furthermore, little is known about the roles of HDL in sepsis other than LPS neutralization. In this study, we employed cecal ligation and puncture (CLP), a clinically relevant septic animal model, and utilized apoA-I knock-out (KO) and transgenic mice to elucidate the roles of HDL in sepsis. ApoA-I-KO mice were more susceptible to CLP-induced septic death as shown by the 47.1% survival of apoA-I-KO mice versus the 76.7% survival of C57BL/6J (B6) mice (p = 0.038). ApoA-I-KO mice had exacerbated inflammatory cytokine production during sepsis compared with B6 mice. Further study indicated that serum from apoA-I-KO mice displayed less capacity for LPS neutralization compared with serum from B6 mice. In addition, apoA-I-KO mice had less LPS clearance, reduced corticosterone generation, and impaired leukocyte recruitment in sepsis. In contrast to apoA-I-KO mice, apoA-I transgenic mice were moderately resistant to CLP-induced septic death compared with B6 mice. In conclusion, our findings reveal multiple protective roles of HDL in CLP-induced sepsis. In addition to its well established role in neutralization of LPS, HDL exerts its protection against sepsis through promoting LPS clearance and modulating corticosterone production and leukocyte recruitment. Our study supports efforts to raise HDL levels as a therapeutic approach for sepsis.


Assuntos
Apolipoproteína A-I/imunologia , Infecções Bacterianas/imunologia , Lipoproteínas HDL/imunologia , Sepse/imunologia , Animais , Apolipoproteína A-I/genética , Infecções Bacterianas/complicações , Ceco/cirurgia , Corticosterona/sangue , Corticosterona/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Ligadura , Lipopolissacarídeos/sangue , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infiltração de Neutrófilos/imunologia , Peritônio/imunologia , Peritônio/metabolismo , Punções , Sepse/etiologia , Sepse/mortalidade , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
15.
J Lipid Res ; 52(12): 2272-2278, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917726

RESUMO

Scavenger receptor BI (SR-BI) is an HDL receptor. It binds HDL and mediates the uptake of cholesteryl ester from HDL. Early studies have pointed out that the extracellular domain of SR-BI is critical for SR-BI-mediated cholesteryl ester uptake. However, the extracellular loop of SR-BI is large: it contains 403 amino acids. The HDL binding site and the modulation of SR-BI-mediated cholesteryl ester uptake remain to be identified. In this study, using C323G mutant SR-BI, we showed that C323G mutant SR-BI lost its HDL binding and cholesteryl ester uptake activity, indicating that the highly conserved C323 is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. Using a blocking antibody against C323 region, we demonstrated that C323 is directly involved in HDL binding and likely an HDL binding site. Using C323G mutant transgenic mouse model, we further demonstrated that C323 of SR-BI is required for regulating plasma cholesterol levels in vivo. Using redox reagents, we showed that physiological relevant levels of H(2)O(2) upregulated the SR-BI-mediated cholesteryl ester uptake activity by 65%, whereas GSH or DTT significantly downregulated SR-BI-mediated cholesteryl ester uptake activity by 45%. C323 of SR-BI is critical for SR-BI-mediated HDL binding and cholesteryl ester uptake, and changes in redox status may be a regulatory factor modulating SR-BI-mediated cholesterol transport.


Assuntos
Ésteres do Colesterol/metabolismo , Cisteína , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/metabolismo , Animais , Células CHO , Cavéolas/metabolismo , Ésteres do Colesterol/sangue , Cricetinae , Cricetulus , Feminino , Humanos , Camundongos , Oxirredução , Ligação Proteica , Transporte Proteico
16.
J Nutr Biochem ; 22(8): 777-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21111593

RESUMO

Phytosterol supplements lower low-density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E (Apo E)-deficient mice, suggesting that the cholesterol-lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may be either beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high-density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect on cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL (agLDL) induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Células Espumosas/efeitos dos fármacos , Sitosteroides/farmacologia , Estigmasterol/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Células Cultivadas , Colesterol/análogos & derivados , Colesterol/farmacologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipoproteínas/efeitos dos fármacos , Lipoproteínas/genética , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitosteróis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
J Biol Chem ; 285(33): 25154-60, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20534584

RESUMO

Sepsis is a leading cause of death, which is characterized by uncontrolled inflammatory response. In this study, we report that caveolin-1, a major component of caveolae, is a critical survival factor of sepsis. We induced sepsis using a well established sepsis animal model, cecal ligation and puncture (CLP). CLP induced 67% fatality in caveolin-1 null mice, but only 27% fatality in wild type littermates (p = 0.015). Further studies revealed that mice deficient in caveolin-1 exhibited marked increase in tumor necrosis factor-alpha and interleukin-6 production 20 h following CLP treatment, indicating uncontrolled inflammatory responses in the absence of caveolin-1. Caveolin-1 null mice also had a significant increase in bacteria number recovered from liver and spleen, indicating elevated bacterial burdens. In addition, caveolin-1 null mice had a 2-fold increase in thymocyte apoptosis compared with wild type littermates, indicating caveolin-1 as a critical modulator of thymocyte apoptosis during sepsis. In conclusion, our findings demonstrate that caveolin-1 is a critical protective modulator of sepsis in mice. Caveolin-1 exerts its protective function likely through its roles in modulating inflammatory response, alleviating bacterial burdens, and suppressing thymocyte apoptosis.


Assuntos
Apoptose/imunologia , Caveolina 1/metabolismo , Sepse/imunologia , Sepse/microbiologia , Timo/citologia , Timo/imunologia , Animais , Apoptose/genética , Caveolina 1/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Perfuração Intestinal/complicações , Ligadura , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Peroxidase/metabolismo , Punções , Sepse/etiologia
18.
J Immunol ; 183(11): 7411-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19890037

RESUMO

MAPKs are crucial for TNF-alpha and IL-6 production by innate immune cells in response to TLR ligands. MAPK phosphatase 1 (Mkp-1) deactivates p38 and JNK, abrogating the inflammatory response. We have previously demonstrated that Mkp-1(-/-) mice exhibit exacerbated inflammatory cytokine production and increased mortality in response to challenge with LPS and heat-killed Staphylococcus aureus. However, the function of Mkp-1 in host defense during live Gram-negative bacterial infection remains unclear. We challenged Mkp-1(+/+) and Mkp-1(-/-) mice with live Escherichia coli i.v. to examine the effects of Mkp-1 deficiency on animal survival, bacterial clearance, metabolic activity, and cytokine production. We found that Mkp-1 deficiency predisposed animals to accelerated mortality and was associated with more robust production of TNF-alpha, IL-6 and IL-10, greater bacterial burden, altered cyclooxygenase-2 and iNOS expression, and substantial changes in the mobilization of energy stores. Likewise, knockout of Mkp-1 also sensitized mice to sepsis caused by cecal ligation and puncture. IL-10 inhibition by neutralizing Ab or genetic deletion alleviated increased bacterial burden. Treatment with the bactericidal antibiotic gentamicin, given 3 h after Escherichia coli infection, protected Mkp-1(+/+) mice from septic shock but had no effect on Mkp-1(-/-) mice. Thus, during Gram-negative bacterial sepsis Mkp-1 not only plays a critical role in the regulation of cytokine production but also orchestrates the bactericidal activities of the innate immune system and controls the metabolic response to stress.


Assuntos
Fosfatase 1 de Especificidade Dupla/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Inflamação/imunologia , Sepse/imunologia , Animais , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/imunologia , Fosfatase 1 de Especificidade Dupla/deficiência , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Glucose/metabolismo , Glicogênio/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/microbiologia , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Metabolismo dos Lipídeos/imunologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/imunologia , Sepse/microbiologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
19.
J Biol Chem ; 284(30): 19826-34, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19491399

RESUMO

Sepsis is a leading cause of death that is characterized by uncontrolled inflammatory response. In this study, we report that scavenger receptor BI (SR-BI), a high density lipoprotein receptor, is a critical survival factor of sepsis. We induced sepsis using an established septic animal model, cecal ligation and puncture (CLP). CLP induced 100% fatality in SR-BI-null mice but only 21% fatality in wild type littermates. SR-BI-null mice exhibited aberrant inflammatory responses with delayed inflammatory cytokine generation at the early stage of sepsis and highly elevated inflammatory cytokine production 20 h after CLP treatment. To understand the mechanisms underlying SR-BI protection, we elucidated the effect of macrophage SR-BI on inflammatory cytokine generation. Macrophages from SR-BI-null mice produced significantly higher levels of inflammatory cytokines than those of wild type controls in response to LPS. Importantly, transgenic mice overexpressing SR-BI were more resistant to CLP-induced septic death. Using an HEK-Blue(TM) cell system, we demonstrated that expression of SR-BI suppressed TLR4-mediated NF-kappaB activation. To understand why SR-BI-null mice had a delayed inflammatory response, we elucidated the effect of SR-BI on LPS clearance during sepsis. Compared with wild type controls, SR-BI-null mice had lower plasma LPS levels in the early stage of sepsis and elevated plasma LPS levels 20 h following CLP treatment. In conclusion, our findings demonstrate that SR-BI is a critical protective modulator of sepsis in mice. SR-BI exerts its protective function through its role in modulating inflammatory response in macrophages and facilitating LPS recruitment and clearance.


Assuntos
Citocinas/imunologia , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/imunologia , Sepse/metabolismo , Animais , Células Cultivadas , Corticosterona/sangue , Corticosterona/metabolismo , Citocinas/sangue , Expressão Gênica , Bactérias Gram-Negativas/isolamento & purificação , Lipopolissacarídeos/sangue , Lipopolissacarídeos/imunologia , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , NF-kappa B/imunologia , Receptores Depuradores Classe B/metabolismo , Sepse/mortalidade , Sepse/cirurgia , Receptor 4 Toll-Like/imunologia
20.
Am J Physiol Cell Physiol ; 294(1): C295-305, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17977947

RESUMO

In the current study, we examined whether diabetes affected the ability of HDL to stimulate nitric oxide (NO) production. Using HDL isolated from both diabetic humans and diabetic mouse models, we found that female HDL no longer induced NO synthesis, despite containing equivalent amounts of estrogen as nondiabetic controls. Furthermore, HDL isolated from diabetic females and males prevented acetylcholine-induced stimulation of NO generation. Analyses of both the human and mouse diabetic HDL particles showed that the HDLs contained increased levels of myristic acid. To determine whether myristic acid associated with HDL particles was responsible for the decrease in NO generation, myristic acid was added to HDL isolated from nondiabetic humans and mice. Myristic acid-associated HDL inhibited the generation of NO in a dose-dependent manner. Importantly, diabetic HDL did not alter the levels of endothelial NO synthase or acetylcholine receptors associated with the cells. Surprisingly, diabetic HDL inhibited ionomycin-induced stimulation of NO production without affecting ionomycin-induced increases in intracellular calcium. Further analysis indicated that diabetic HDL prevented calmodulin from interacting with endothelial NO synthase (eNOS) but did not affect the activation of calmodulin kinase or calcium-independent mechanisms for stimulating eNOS. These studies are the first to show that a specific fatty acid associated with HDL inhibits the stimulation of NO generation. These findings have important implications regarding cardiovascular disease in diabetic patients.


Assuntos
Acetilcolina/metabolismo , Calmodulina/metabolismo , Diabetes Mellitus/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Ácido Mirístico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Estrogênios/metabolismo , Feminino , Humanos , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Mirístico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Receptores Colinérgicos/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA